On First-Degree Multivariate Polynomial Approximation

Ph. Defert
Department of Mathematics, Facultés Universitaires de Namur, B-5000 Namur, Belgium

Communicated by Lothar Collatz
Received September 25, 1981

Introduction

In [14], G. D. Taylor enumerated all H-sets relative to first-degree multivariate polynomials; more recently, Carasso and Laurent $[3,4]$ and Collatz [5] introduced chains of supports in the context of a generalized exchange algorithm which converge even if Haar's condition is not satisfied. The purpose of this paper is to extend Taylor's results to this new concept of chain.

Let Q be a compact subset of \mathbb{R}^{p} and F a subspace of $C(Q)$ spanned by $\left\{f_{1}, \ldots, f_{n}\right\}$. Given a continuous function g on Q, the best approximation of g in F is the element f_{0} of F such that

$$
\left\|f_{0}-g\right\|=\inf _{f \in F}\|f-g\|
$$

where

$$
\|h\|=\sup _{x \in Q}|h(x)| .
$$

A subset $S=\left\{p_{1}, \ldots, p_{m}\right\}$ of Q is called a support of a subspace V of \mathbb{R}^{n} if there exist real numbers $\lambda\left(p_{i}\right)(i=1, \ldots, m+1)$ not all zero such that

$$
\sum_{i=1}^{m+1} \lambda\left(p_{i}\right) \mu\left(p_{i}\right) \in V,
$$

where

$$
\mu(p)=\left(f_{1}(p), \ldots, f_{n}(p)\right)^{T}
$$

A support S is said to be minimal when no proper subset of S is a support; all possible characteristic coefficients $\lambda\left(p_{i}\right)$ are then nonzero and lie in a space of dimension 1. If $V=\{0\}$, a minimal support is a minimal H-set
[1,5,9]. As for H-sets, one can associate to a minimal support a sign pattern $e=\left(e_{1}, \ldots, e_{m+1}\right)$ such that

$$
e_{i}=\operatorname{sign} \lambda\left(p_{i}\right)
$$

A sequence of minimal supports can build a regular chain as follows.
Let $S_{1}=\left\{p_{1, i} ; i=1, \ldots, m_{1}+1\right\}$ be a minimal H-set relative to F with sign pattern $e_{1}=\left(e_{1,1}, \ldots, e_{1, m_{1}+1}\right)$. The linear subspace V_{1} of \mathbb{R}^{n} spanned by the m_{1} independent vectors $\mu\left(p_{1, i}\right)\left(i=1, \ldots, m_{1}\right)$ has the following properties:
(a) For all $a \in V_{1}^{\perp}$, one has

$$
\sum_{i=1}^{n} a_{i} f_{i}\left(p_{1, j}\right)=0 \quad\left(j=1, \ldots, m_{1}+1\right)
$$

(b) If W_{1} is the variety of all coefficients of best approximations of any function g in F on $S_{1}, V_{1}^{\mathrm{i}}$ is parallel to W_{1}.

Now, let $S_{2}=\left\{p_{2, i} ; i=1, \ldots, m_{2+1}\right\}$ be a support of V_{1}. The space $V_{2}=$ $\operatorname{span}\left\{u\left(p_{1, i}\right), i=1, \ldots, m_{1} ; u\left(p_{2, i}\right), i=1, \ldots, m_{2}\right\}$ has dimension $m_{1}+m_{2}$ and properties similar to those of V_{1}.

Repeating this process, one obtains a chain $C=\left(S_{1}, \ldots, S_{M}\right)$ when $V_{M}=\mathbb{R}^{n}$ and if every support of one point is deleted, the chain becomes regular.

Two regular chains $C^{(1)}=\left(S_{1}^{1}, \ldots, S_{M_{1}}^{1}\right)$ and $C^{(2)}=\left(S_{1}^{2}, \ldots, S_{M_{2}}^{2}\right)$ are said to lie in the same class if $M_{1}=M_{2}$ and if, for all $i=1, \ldots, M_{1}$, $\operatorname{card} S_{i}^{1}=\operatorname{card} S_{i}^{2}$ and the sign patterns associated to S_{i}^{1} and S_{i}^{2} are such that either $e_{i}^{1}=e_{i}^{2}$ or $e_{i}^{1}=-e_{i}^{2}$.

Basic Theorem

Let P_{n}^{j} be the space of n-variable polynomials of degree at most j and, for a real a, let $[a]$ denote the greatest integer in a.

Theorem 1. There exist exactly $[n / 2]+1$ classes of chains of P_{n} composed of a single support.

Proof. If $C=\left(S_{1}\right)$ is a chain of P_{n}^{1}, S_{1} is to be a minimal H-set of $n+2$ points and the result is given by Lemma 4 of [14].

If $C=\left(S_{1}, \ldots, S_{M}\right)$ i a regular chain of P_{n}^{1}, one will call an extension of C in P_{n+i}^{1} (with $i>0$) every regular chain C^{*} such that there exists an injective homomorphism h_{i} from \mathbb{R}^{n} to \mathbb{R}^{n+i} with

$$
C^{*}=\left(h_{i}\left(S_{t}\right), \ldots, h_{t}\left(S_{M}\right), S_{M+1}^{*}\right)
$$

Figure 1
Example. The subset $S=\{x, y, z: x<y<z\}$ of \mathbb{R} is a minimal H-set and a regular chain of $P_{1}^{1}=\operatorname{span}\left\{1, x_{1}\right\}$. The set $S_{1}=h_{1}(S)=\left\{{ }^{T}(x, 0)\right.$, $\left.{ }^{T}(y, 0),{ }^{T}(z, 0)\right\}$ determines a minimal H-set relative to $P_{2}^{1}=\operatorname{span}\left\{1, x_{1}, x_{2}\right\}$. As $V_{1}=\operatorname{span}\left\{{ }^{T}(1, x, 0),{ }^{T}(1, y, 0)\right\}$ has dimension 2 , the set $S_{2}=\left\{{ }^{T}\left(u_{1}, u_{2}\right)\right.$, $\left.{ }^{T}\left(v_{1}, v_{2}\right): u_{2}, v_{2} \neq 0\right\}$ completes S_{1} to build a regular chain of P_{2}^{1}; $C^{(1)}=\left(S_{1}, S_{2}\right)$ is an extension of (S) in P_{2}^{1} (see Figs. 1, 2).

The H-set

$$
T_{1}=h_{2}(S)=\left\{{ }^{T}(x, 0,0),{ }^{T}(y, 0,0),{ }^{T}(z, 0,0)\right\}
$$

relative to P_{3}^{1} joined with

$$
T_{2}=\left\{{ }^{T}\left(u_{1}, u_{2}, u_{3}\right),{ }^{T}\left(v_{1}, v_{2}, v_{3}\right),{ }^{T}\left(w_{1}, w_{2}, w_{3}\right)\right\}
$$

such that the x_{1} axis cuts the plane determined by u, v and w in a single point forms a regular chain $C^{(2)}=\left(T_{1}, T_{2}\right)$ which is an extension of (S) in P_{3}^{1} (see Figs. 3, 4).

If

$$
R_{1}=h_{1}\left(S_{1}\right)=\left\{{ }^{T}(x, 0,0),{ }^{T}(y, 0,0),{ }^{T}(z, 0,0)\right\}
$$

and

$$
R_{2}=h_{1}\left(S_{2}\right)=\left\{{ }^{T}\left(u_{1}, v_{1}, 0\right),{ }^{T}\left(u_{2}, v_{2}, 0\right): u_{2}, v_{2} \neq 0\right\}
$$

Figure 2

Figure 3
then

$$
C^{(3)}=\left(R_{1}, R_{2}, R_{3}\right)
$$

with

$$
R_{3}=\left\{{ }^{T}\left(a_{1}, a_{2}, a_{3}\right),{ }^{T}\left(b_{1}, b_{2}, b_{3}\right): a_{3}, b_{3} \neq 0\right\}
$$

is a regular chain of P_{3}^{1} and an extension of $C^{(1)}$ in P_{3}^{1} (see Figs. 5, 6).
Theorem 2. If C is a regular chain of $P_{n}^{\mathbf{1}}$, there exist $[(i+1) / 2]+1$ classes of extensions of C in P_{n+i}^{1}.

Proof. Let $C=\left(S_{1}, \ldots, S_{M}\right)$ be a regular chain of P_{n}^{1}, and $C^{*}=\left(h_{i}\left(S_{1}\right), \ldots\right.$, $h_{i}\left(S_{M}\right), S_{M+1}^{*}$) be an extension of C in P_{n+i}^{1}. One has $\operatorname{dim} V_{M}=n$ and $\operatorname{dim} V_{M}^{*}=n+i$ so that S_{M+1}^{*} must have $i+1$ points and its associated sign pattern may be chosen in $[(i+1) / 2]+1$ different ways.

Example. Let $C^{(i)}(i=1,2,3)$ be defined as above. For all i, the first associated sign patterns are $e_{i}^{(i)}=(1,-1,1)$. For the extension $C^{(1)}$, if u_{2} and v_{2} are chosen such that $u_{2} \cdot v_{2}>0$ (Fig. 1), $e_{2}^{(1)}=(1,-1)$ and otherwise (Fig. 2) $e_{2}^{(1)}=(1,1)$. Concerning $C^{(2)}, e_{2}^{(2)}$ will be determined by the position of the cutting point p of the x_{1} axis in the plane u, v, w. Indeed, if p is inside

Figure 4

Figure 5
the triangle u, v, w (Fig. 3), $e_{2}^{(2)}=(1,1,1)$ and otherwise (Fig. 4) $e_{2}^{(2)}=$ $(1,1,-1)$. If $C^{(3)}$ is an extension of a $C^{(2)}$ (Figs. 1, 2), and if $b_{3} \cdot a_{3}>0$ (Fig. 5), $e_{3}^{(3)}=(1,-1)$, and if not (Fig. 6) $e_{3}^{(3)}=(1,1)$.

Theorem 3. If $c(n)$ represents the number of classes of chains of P_{n}^{1},

$$
\begin{equation*}
c(n)=[n / 2]+1+\sum_{i=1}^{n-1}([(i+1) / 2]+1) c(n-i) \tag{1}
\end{equation*}
$$

Proof. The first term is given by Theorem 1 and the sum is induced by Theorem 2.

Theorem 4. If $n \geqslant 5$,

$$
\begin{equation*}
c(n)=3 c(n-1)+c(n-2)-2 c(n-3) \tag{2}
\end{equation*}
$$

Proof. From Theorem 3, if $n \geqslant 5$, one has

$$
\begin{align*}
c(n)-c(n-2) & =1+2 c(n-2)+2 c(n-1)+\sum_{i=1}^{n-3} c(i), \tag{3}\\
c(n-1)-c(n-3) & =1+2 c(n-3)+2 c(n-2)+\sum_{i=1}^{n-4} c(i) . \tag{4}
\end{align*}
$$

(2) is obtained by substracting (4) from (3).

Figure 6

The result (2) leads to the construction of Table 1, which shows $c(n)$ with $n \leqslant 10$, given the initial values

$$
\begin{equation*}
c(1)=1, \quad c(2)=4, \quad c(3)=12 \tag{5}
\end{equation*}
$$

Finally, one gets an explicit form for $c(n)$.
Theorem 5.

$$
\begin{equation*}
c(n)=\alpha_{1} r_{\mathrm{t}}^{n}+\alpha_{2} r_{2}^{n}+\alpha_{3} r_{3}^{n}, \tag{6}
\end{equation*}
$$

where the rounded values of the parameters are

$$
\begin{array}{ll}
\alpha_{1}=-0.106464, & r_{1}=0.745898 \\
\alpha_{2}=0.203653, & r_{2}=-0.860806 \\
\alpha_{3}=0.402810, & r_{3}=3.114908
\end{array}
$$

Proof. $\quad r_{1}, r_{2}, r_{3}$ are the roots of the characteristic equation derived from the recurrent relation (2) and $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are fitted to the initial conditions (5).

If $(a)_{R}$ denotes the nearest integer to the real a, one obtains a simpler form for $c(n)$.

Theorem 6.

$$
\begin{equation*}
c(n)=\left(\alpha_{3} r_{3}^{n}\right)_{R} \tag{7}
\end{equation*}
$$

Proof. If $n \geqslant 1,\left|\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}\right|<0.26$, so that (6) leads directly to (7).
TABLE I
Number of Classes of Chains of P_{n}^{\prime} According to the Dimension n

n	$c(n)$
1	1
2	4
3	12
4	38
5	118
6	368
7	1.146
8	3,570
9	1,120
10	34,638

Corollary, If G is a $n+1$ dimensional subspace of $c(Q)$, the number of classes of chains of G is not greater than $c(n)$.

Proof. It is quite easily seen that P_{n}^{1} possesses the maximum number of classes of chains among all spaces of dimension $(n+1)$. Indeed, every possible case for every support has been considered in the preceding counting.

References

1. M. Brannigan, H-sets in linear approximation, J. Approx. Theory 20 (1977), 153-161.
2. M. Brannigan, Uniform approximation by generalized polynomials, BIT 173 (1977), 262-269.
3. C. Carasso and P. J. Lavrent, Un algorithme de minimisation en chaine en optimisation convexe, SIAM J. Control Optim. 16 (1978), 209-235.
4. C. Carasso and P. J. Laurent, Un algorithme général pour l'approximation au sens de Tchebycheff de fonctions bornées sur un ensemble quelconque." Lecture Notes in Mathematics No. 556, Springer-Verlag, Berlin/New York, 1976.
5. L. Collatz, Inclusion theorems for the minimal distance in rational Tschebyscheff approximation with several variables, in "Approximation of Functions" (M. L. Garabedian, Ed.), pp. 43-56, Elsevier, Amsterdam, 1965.
6. Collatz-Krabs, "Approximationstheorie," Teubner, Stuttgart, 1973.
7. Ph. Defert and J. P. Thiran, "Exchange algorithm for multivariate polynomials." Tagung, Oberwolfach, ISNM, Birkhäuser, Basel, 1981.
8. J. Decloux, Dégénérescence dans les approximations de Tschebyscheff linéaires et discrètes, Numer. Math. 3 (1961), 180-187.
9. C. Dierieck, Some remarks on H-sets in linear approximation theory, J. Approx. Theory 21 (1977), 188-204.
10. W. G. Gearhart, Some extremal signature for polynomials, J. Approx. Theory 7 (1973). 8-20.
11. L. W. Johnson. Minimal H-sets and unicity of best approximation, J. Approx. Theory 7 (1973), 352-354.
12. Y. Kamp and J. P. Thiran. Chebyshev approximation for two-dimensional nonrecursive digital filters, IEEE Trans. Circuits Systems CAS-22 (1975), 208-218.
13. T. S. Rivlin and H. S. Shapiro. A unified approach to certain problems of approximation and optimization, J. SIAM 9 (1960), 670-699.
14. G. D. Taylor, On minimal H-sets, J. Approx. Theory 5 (1972), 113-117.
15. J. P. Thiran and P. Defert, Weak minimal H-sets for polynomials in two variables. submitted.
16. H. J. Töpfer, "Tschebyscheff-Approximation und Austauschverfahren bei nicht erfüllter Haarscher Bedingung," Tagung, Oberwolfach (1965), pp. 71-89, ISNM7, Birkhäuser, Basel, 1967.
