On First-Degree Multivariate Polynomial Approximation

PH. DEFERT

Department of Mathematics, Facultés Universitaires de Namur, B-5000 Namur, Belgium

Communicated by Lothar Collatz

Received September 25, 1981

Introduction

In [14], G. D. Taylor enumerated all *H*-sets relative to first-degree multivariate polynomials; more recently, Carasso and Laurent [3, 4] and Collatz [5] introduced chains of supports in the context of a generalized exchange algorithm which converge even if Haar's condition is not satisfied. The purpose of this paper is to extend Taylor's results to this new concept of chain.

Let Q be a compact subset of \mathbb{R}^p and F a subspace of C(Q) spanned by $\{f_1,...,f_n\}$. Given a continuous function g on Q, the best approximation of g in F is the element f_0 of F such that

$$||f_0-g|| = \inf_{f \in F} ||f-g||,$$

where

$$||h|| = \sup_{x \in Q} |h(x)|.$$

A subset $S = \{p_1, ..., p_m\}$ of Q is called a support of a subspace V of \mathbb{R}^n if there exist real numbers $\lambda(p_i)$ (i = 1, ..., m + 1) not all zero such that

$$\sum_{i=1}^{m+1} \lambda(p_i) \mu(p_i) \in V,$$

where

$$\mu(p) = (f_1(p),...,f_n(p))^T.$$

A support S is said to be minimal when no proper subset of S is a support; all possible characteristic coefficients $\lambda(p_i)$ are then nonzero and lie in a space of dimension 1. If $V = \{0\}$, a minimal support is a minimal H-set 381

382 PH. DEFERT

[1, 5, 9]. As for *H*-sets, one can associate to a minimal support a sign pattern $e = (e_1, ..., e_{m+1})$ such that

$$e_i = \operatorname{sign} \lambda(p_i).$$

A sequence of minimal supports can build a regular chain as follows.

Let $S_1 = \{p_{1,i}; i = 1,..., m_1 + 1\}$ be a minimal *H*-set relative to *F* with sign pattern $e_1 = (e_{1,1},...,e_{1,m_1+1})$. The linear subspace V_1 of \mathbb{R}^n spanned by the m_1 independent vectors $\mu(p_{1,i})$ $(i = 1,...,m_1)$ has the following properties:

(a) For all $a \in V_1^{\perp}$, one has

$$\sum_{i=1}^{n} a_i f_i(p_{1,j}) = 0 \qquad (j = 1, ..., m_1 + 1);$$

(b) If W_1 is the variety of all coefficients of best approximations of any function g in F on S_1 , V_1^{\perp} is parallel to W_1 .

Now, let $S_2 = \{p_{2,i}; i = 1,..., m_{2+1}\}$ be a support of V_1 . The space $V_2 = \text{span}\{u(p_{1,i}), i = 1,..., m_1; u(p_{2,i}), i = 1,..., m_2\}$ has dimension $m_1 + m_2$ and properties similar to those of V_1 .

Repeating this process, one obtains a chain $C = (S_1, ..., S_M)$ when $V_M = \mathbb{R}^n$ and if every support of one point is deleted, the chain becomes regular.

Two regular chains $C^{(1)}=(S_1^1,...,S_{M_1}^1)$ and $C^{(2)}=(S_1^2,...,S_{M_2}^2)$ are said to lie in the same class if $M_1=M_2$ and if, for all $i=1,...,M_1$, card $S_i^1=\operatorname{card} S_i^2$ and the sign patterns associated to S_i^1 and S_i^2 are such that either $e_i^1=e_i^2$ or $e_i^1=-e_i^2$.

BASIC THEOREM

Let P_n^j be the space of *n*-variable polynomials of degree at most j and, for a real a, let [a] denote the greatest integer in a.

THEOREM 1. There exist exactly $\lfloor n/2 \rfloor + 1$ classes of chains of P_n^i composed of a single support.

Proof. If $C = (S_1)$ is a chain of P_n^1 , S_1 is to be a minimal *H*-set of n+2 points and the result is given by Lemma 4 of [14].

If $C = (S_1, ..., S_M)$ i a regular chain of P_n^1 , one will call an extension of C in P_{n+i}^1 (with i > 0) every regular chain C^* such that there exists an injective homomorphism h_i from \mathbb{R}^n to \mathbb{R}^{n+i} with

$$C^* = (h_i(S_1), ..., h_i(S_M), S_{M+1}^*).$$

FIGURE 1

EXAMPLE. The subset $S = \{x, y, z : x < y < z\}$ of \mathbb{R} is a minimal H-set and a regular chain of $P_1^1 = \operatorname{span}\{1, x_1\}$. The set $S_1 = h_1(S) = \{^T(x, 0), ^T(y, 0), ^T(z, 0)\}$ determines a minimal H-set relative to $P_2^1 = \operatorname{span}\{1, x_1, x_2\}$. As $V_1 = \operatorname{span}\{^T(1, x, 0), ^T(1, y, 0)\}$ has dimension 2, the set $S_2 = \{^T(u_1, u_2), ^T(v_1, v_2): u_2, v_2 \neq 0\}$ completes S_1 to build a regular chain of P_2^1 : $C^{(1)} = (S_1, S_2)$ is an extension of (S) in P_2^1 (see Figs. 1, 2).

The H-set

$$T_1 = h_2(S) = \{ {}^{T}(x, 0, 0), {}^{T}(y, 0, 0), {}^{T}(z, 0, 0) \}$$

relative to P_3^1 joined with

$$T_2 = \{ {}^{T}(u_1, u_2, u_3), {}^{T}(v_1, v_2, v_3), {}^{T}(w_1, w_2, w_3) \}$$

such that the x_1 axis cuts the plane determined by u, v and w in a single point forms a regular chain $C^{(2)} = (T_1, T_2)$ which is an extension of (S) in P_3^1 (see Figs. 3, 4).

If

$$R_1 = h_1(S_1) = \{ {}^T(x, 0, 0), {}^T(y, 0, 0), {}^T(z, 0, 0) \}$$

and

$$R_2 = h_1(S_2) = \{ {}^T(u_1, v_1, 0), {}^T(u_2, v_2, 0) : u_2, v_2 \neq 0 \},$$

FIGURE 2

384 PH. DEFERT

then

$$C^{(3)} = (R_1, R_2, R_3)$$

with

$$R_3 = \{ {}^T(a_1, a_2, a_3), {}^T(b_1, b_2, b_3) : a_3, b_3 \neq 0 \}$$

is a regular chain of P_3^1 and an extension of $C^{(1)}$ in P_3^1 (see Figs. 5, 6).

THEOREM 2. If C is a regular chain of P_n^1 , there exist [(i+1)/2] + 1 classes of extensions of C in P_{n+i}^1 .

Proof. Let $C = (S_1, ..., S_M)$ be a regular chain of P_n^1 , and $C^* = (h_i(S_1), ..., h_i(S_M), S_{M+1}^*)$ be an extension of C in P_{n+i}^1 . One has dim $V_M = n$ and dim $V_M^* = n + i$ so that S_{M+1}^* must have i+1 points and its associated sign pattern may be chosen in [(i+1)/2] + 1 different ways.

EXAMPLE. Let $C^{(i)}$ (i=1,2,3) be defined as above. For all i, the first associated sign patterns are $e_i^{(i)} = (1,-1,1)$. For the extension $C^{(1)}$, if u_2 and v_2 are chosen such that $u_2 \cdot v_2 > 0$ (Fig. 1), $e_2^{(1)} = (1,-1)$ and otherwise (Fig. 2) $e_2^{(1)} = (1,1)$. Concerning $C^{(2)}$, $e_2^{(2)}$ will be determined by the position of the cutting point p of the x_1 axis in the plane u, v, w. Indeed, if p is inside

FIGURE 4

FIGURE 5

the triangle u, v, w (Fig. 3), $e_2^{(2)} = (1, 1, 1)$ and otherwise (Fig. 4) $e_2^{(2)} = (1, 1, -1)$. If $C^{(3)}$ is an extension of a $C^{(2)}$ (Figs. 1, 2), and if $b_3 \cdot a_3 > 0$ (Fig. 5), $e_3^{(3)} = (1, -1)$, and if not (Fig. 6) $e_3^{(3)} = (1, 1)$.

THEOREM 3. If c(n) represents the number of classes of chains of P_n^1 ,

$$c(n) = \lfloor n/2 \rfloor + 1 + \sum_{i=1}^{n-1} (\lfloor (i+1)/2 \rfloor + 1) c(n-i).$$
 (1)

Proof. The first term is given by Theorem 1 and the sum is induced by Theorem 2. ■

THEOREM 4. If $n \ge 5$,

$$c(n) = 3c(n-1) + c(n-2) - 2c(n-3).$$
 (2)

Proof. From Theorem 3, if $n \ge 5$, one has

$$c(n)-c(n-2)=1+2c(n-2)+2c(n-1)+\sum_{i=1}^{n-3}c(i), \qquad (3)$$

$$c(n-1)-c(n-3)=1+2c(n-3)+2c(n-2)+\sum_{i=1}^{n-4}c(i).$$
 (4)

(2) is obtained by substracting (4) from (3).

FIGURE 6

The result (2) leads to the construction of Table 1, which shows c(n) with $n \le 10$, given the initial values

$$c(1) = 1,$$
 $c(2) = 4,$ $c(3) = 12.$ (5)

Finally, one gets an explicit form for c(n).

THEOREM 5.

$$c(n) = \alpha_1 r_1^n + \alpha_2 r_2^n + \alpha_3 r_3^n, \tag{6}$$

where the rounded values of the parameters are

$$\alpha_1 = -0.106464,$$
 $r_1 = 0.745898,$
 $\alpha_2 = 0.203653,$ $r_2 = -0.860806,$
 $\alpha_3 = 0.402810,$ $r_3 = 3.114908.$

Proof. r_1, r_2, r_3 are the roots of the characteristic equation derived from the recurrent relation (2) and $\alpha_1, \alpha_2, \alpha_3$ are fitted to the initial conditions (5).

If $(a)_R$ denotes the nearest integer to the real a, one obtains a simpler form for c(n).

THEOREM 6.

$$c(n) = (\alpha_3 r_3^n)_R. \tag{7}$$

Proof. If $n \ge 1$, $|\alpha_1 r_1^n + \alpha_2 r_2^n| < 0.26$, so that (6) leads directly to (7).

TABLE I

Number of Classes of Chains of P_n^1 According to the Dimension n

n	c(n)
1	1
2	4
3	12
4	38
5	118
6	368
7	1,146
8	3,570
9	1,120
10	34,638

COROLLARY. If G is a n+1 dimensional subspace of c(Q), the number of classes of chains of G is not greater than c(n).

Proof. It is quite easily seen that P_n^1 possesses the maximum number of classes of chains among all spaces of dimension (n+1). Indeed, every possible case for every support has been considered in the preceding counting.

REFERENCES

- 1. M. Brannigan, H-sets in linear approximation, J. Approx. Theory 20 (1977), 153-161.
- M. Brannigan, Uniform approximation by generalized polynomials, BIT 173 (1977), 262-269.
- C. CARASSO AND P. J. LAURENT, Un algorithme de minimisation en chaîne en optimisation convexe. SIAM J. Control Optim. 16 (1978), 209-235.
- C. CARASSO AND P. J. LAURENT, Un algorithme général pour l'approximation au sens de Tchebycheff de fonctions bornées sur un ensemble quelconque," Lecture Notes in Mathematics No. 556, Springer-Verlag, Berlin/New York, 1976.
- 5. L. COLLATZ, Inclusion theorems for the minimal distance in rational Tschebyscheff approximation with several variables, in "Approximation of Functions" (M. L. Garabedian, Ed.), pp. 43-56, Elsevier, Amsterdam, 1965.
- 6. COLLATZ-KRABS, "Approximationstheorie," Teubner, Stuttgart, 1973.
- PH. DEFERT AND J. P. THIRAN, "Exchange algorithm for multivariate polynomials," Tagung, Oberwolfach, ISNM, Birkhäuser, Basel, 1981.
- 8. J. DECLOUX, Dégénérescence dans les approximations de Tschebyscheff linéaires et discrètes, Numer. Math. 3 (1961), 180-187.
- 9. C. DIERIECK, Some remarks on H-sets in linear approximation theory, J. Approx. Theory 21 (1977), 188-204.
- W. G. GEARHART, Some extremal signature for polynomials, J. Approx. Theory 7 (1973), 8-20.
- 11. L. W. JOHNSON, Minimal H-sets and unicity of best approximation, J. Approx. Theory 7 (1973), 352-354.
- 12. Y. KAMP AND J. P. THIRAN, Chebyshev approximation for two-dimensional nonrecursive digital filters, *IEEE Trans. Circuits Systems* CAS-22 (1975), 208-218.
- 13. T. S. RIVLIN AND H. S. SHAPIRO, A unified approach to certain problems of approximation and optimization, J. SIAM 9 (1960), 670-699.
- 14. G. D. TAYLOR, On minimal H-sets, J. Approx. Theory 5 (1972), 113-117.
- J. P. THIRAN AND P. DEFERT, Weak minimal H-sets for polynomials in two variables, submitted.
- H. J. TÖPFER, "Tschebyscheff-Approximation und Austauschverfahren bei nicht erfüllter Haarscher Bedingung," Tagung, Oberwolfach (1965), pp. 71-89, ISNM7, Birkhäuser, Basel, 1967.